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Abstract

This paper proposes a computational model for altruistic behavior, shows its implementation on a physical robot, and

presents the results of human-robot interaction experiments conducted with the implemented system. Inspired from

the sensorimotor mechanisms of the primate brain, object affordances are utilized for both intention estimation and

action execution, in particular to generate altruistic behavior. At the core of the model is the notion that sensorimotor

systems developed for movement generation can be used to process the visual stimuli generated by actions of the

others, infer the goals behind, and take the necessary actions to help achieving these goals; potentially leading to

the emergence of altruistic behavior. Therefore, we argue that altruistic behavior is not necessarily a consequence of

deliberate cognitive processing but may emerge through basic sensorimotor processes such as error minimization,

i.e. minimizing the difference between the observed and expected outcomes. In the model, affordances also play a

key role by constraining the possible set of actions that an observed actor might be engaged in, enabling a fast and

accurate intention inference. The model components are implemented on an upper-body humanoid robot. A set of

experiments are conducted validating the workings of the components of the model, such as affordance extraction and

task execution. Significantly, to assess how human partners interact with our altruistic model deployed robot, extensive

experiments with naı̈ve subjects are conducted. Our results indicate that the proposed computational model can explain

emergent altruistic behavior in reference to its biological counterpart, and moreover engage human partners to exploit

this behavior when implemented on an anthropomorphic robot.
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1 Introduction

It has been observed that at earlier ages chimpanzees
and infants tend to help fulfilling others’ goals without
being explicitly triggered by an external agent, even in the
absence of any reward. Accomplishing such helping task
seemingly requires estimating others’ intentions to predict
their future goals. The experiments performed by Warnaken
and Tomasello (Warneken & Tomasello, 2007; Warneken
& Tomasello, 2006; Warneken, Chen & Tomasello, 2006)
showed that the altruistic behavior can be observed even
from 14 months of age for infants in simple tasks like
handing the objects that are out-of-reach for the others.
By observing the stretching of the arm toward an object,
infants are able to predict other’s future goal of grasping it.
Although many studies (Tomasello, Carpenter, Call, Behne
& Moll, 2005; Provasi, Dubon & Bloch, 2001; Baldwin,
Baird, Saylor & Clark, 2001; Warneken & Tomasello, 2006)

proposed that the infants can indeed help others through
some kind of early empathy towards them, recent studies
(Kenward & Gredebck, 2013) suggest that such pro-social
behaviors might be due to a desire to accomplish ‘unfulfilled
goals’, evidenced by the fact that 18-month-old infants
would help not only to living organisms but also to the
spherical objects in accomplishing their predicted goals.
Further data (Warneken & Tomasello, 2009) support the idea
that the infants are willing to help without any kind of social
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2 Adaptive Behavior XX(X)

signal, e.g. when an experimenter whose hands are full of
books tries to put them in a closed bookshelf, infants, without
any reward expectation, come to open the door so that the
experimenter can fulfill his goal.

Figure 1. An example scene from our experimental setup. One
subject is seated on one of the long sides of the table and the
robot with a Kinect attached on its head stands on the opposite
long side. Both are sharing a table top environment with
different daily objects.

Inferring others’ actions and executing one’s own actions
are closely intertwined processes. Reuse of cortical circuits
for both movement generation and action estimation
seems to be a key principle in sensorimotor organization
in primates. For complex object manipulation in an
environment, an organism extracts object properties relevant
for manipulation, detects object affordances, and makes
motor plans based on them to fulfill a desired change
in the environment. During execution of an action, for
example grasping, the agent monitors the control variables
(such as distance of the hand to the target) to bring them
to their desired values (i.e. error reduction), and check
for unexpected disturbances by comparing the predicted
change with the actual change (by using internal forward
models). In this description, three key notions surface: object
affordances, control variable based error reduction, and
forward models, which have received considerable attention
in the literature. Learned object affordances were used in
dexterous behavior generation and imitation in many studies
(e.g. (Oztop, Imamizu, Cheng & Kawato, 2006; Ugur, Nagai,
Sahin & Oztop, 2015; Ugur, Oztop & Sahin, 2011)); control
variable computations and forward models developed for
action generation were exploited for mental state inference in
(Oztop, Wolpert & Kawato, 2005). The neuroscientific data
indicates a tight connection between affordance computation
and intention understanding, in particular in relation to
mirror neurons as reviewed in (Thill, Caligiore, Borghi,

Ziemke & Baldassarre, 2013). Yet, to our knowledge
there are no computational models that integrate affordance
extraction with mental state inference mechanisms in a
biological plausible manner.

In this study, we develop a biologically inspired
computational model of altruistic behavior, and implement
it on an anthropomorphic robot, which integrates object
affordance computation and intention extraction to explain
how altruistic behavior may emerge via the dual use of
sensorimotor circuits for action observation and execution.
Specifically, our postulation is that altruistic behavior may
be triggered by basic sensorimotor processes as error
minimization, rather than derived from conscious cognitive
processes. The current model builds upon the previous model
of Oztop et al. (Oztop, Wolpert & Kawato, 2005) and
augments it with affordance extraction mechanism for more
accurate goal inference. In the model, the possible set of
actions that an observed actor might be performing is limited
by the affordances available in the environment which in
turn speeds up and refines the intention inference. Although
the model components are associated with plausible brain
regions, for the robotic implementation a schema based
approach (Arbib, 1981; Arbib, Erdi & Szentagothai, 1998) is
adopted where some modules are programmed directly, yet
others learn from robot’s own experience. The neural level
implementation of model components is left for a later study.
In particular, in this study we aimed to use this model as
part of the cognitive architecture of a physical robot that can
interact with the humans with acceptable processing delays.
Thus, the model implementation has to comply with real-
time constraints with real sensorimotor signals and drive a
physical robot in contrast to driving a simulated robot with
synthetic sensorimotor signals.

In the realized system the robot, under the guidance of
the model, interacts with the human by observing his/her
actions, and steps in for help when it decides that the action
(and the predicted goal) cannot be fulfilled. By using its own
sensorimotor capabilities, the robot plans and executes a set
of actions, which may be different from the ones used by its
human partner. So it is not necessarily a partial imitation that
leads to the altruistic help. It is worth underlining that the
object affordance extraction capability of the robot -learned
by prior robot experience- facilitates accurate goal inference
as well as correct task execution, which contribute to the
naturalness of the interaction with the robot.

After the computational model has been implemented on
the robot, we assessed the sensorimotor capabilities such as
the affordance extraction and task execution performance
of the obtained system by running validation experiments.
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Affordance-Based Altruistic Robotic Architecture 3

Then, we conducted human-robot interaction experiments
with naı̈ve subjects to evaluate the effectiveness of the system
as an altruistic partner.

2 Related Work

Altruistic helping behavior was previously realized in a
robotic system by (Baraglia, Nagai & Asada, 2016) who
utilized mechanisms for predictive learning of sensorimotor
information and goal-alignment theory, where the robot
continuously updated its predictor to learn action primitives
by minimizing a prediction error. The benefit of having this
updated predictor is twofold: inferring the future state of the
others’ actions and estimating a prediction error based on
observed and inferred states. As long as the others fail in
completing their inferred task, the prediction error grows up
to a point where the robot steps in to help them fulfill their
goal.

We extend this prediction error minimization approach
through exploiting affordances. Affordances have been
extensively studied in the last decades for learning
action-related object properties, representing the effects of
the actions, encoding multi-object models and tool use,
multi-step predictions for action planning and human-
robot interaction and communication (Jamone, Ugur,
Cangelosi, Fadiga, Bernardino, Piater & Santos-Victor,
2016). In particular, object affordances along with human
manipulation actions were detected from video sequences
and from RGB-D images using an open knowledge based of
visual affordances of common household objects (Koppula,
Gupta & Saxena, 2013). While such perception-only systems
achieve good recognition performance, their performance in
relation to action and object affordance cannot be assessed
. As discussed in a recent detailed survey on affordances
(Zech, Haller, Lakani, Ridge, Ugur & Piater, 2017), solving
the correspondence problem and the need for neurally
inspired models still remain as open research challenges in
affordances research.

A number of studies have worked on inferring goals
of others using observations of body parts and object
affordances. Zanchettin and Rocco used hand trajectory
for predicting the target position from a set of pre-defined
positions using Bayesian inference to improve human-robot
collaboration (Zanchettin & Rocco, 2017). Another recent
work modeled human actions probabilistically by defining
object affordances as the combination of information related
to the distance and the angular position of the human body,
independent of physical properties of the objects (Dutta
& Zielinska, 2018). According to the knowledge of the

authors, the novelty of our work can be summarized as: (1)
development of an altruistic robot partner with affordances
learning and exploitation capability, (2) development of a
biologically realistic model of altruistic behavior guiding
the robotic implementation, (3) validation of our robot as
an intuitive altruistic partner with human-robot interaction
experiments.

3 Model

This paper proposes a computational model that is inspired
from the sensorimotor processing of primate brain, and that
integrates the concepts of affordance, intention estimation
and altruistic behavior. The sensorimotor system developed
for movement generation is placed in the center of the model
to be exploited not only to predict the behavior of others but
also to allow the altruistic behavior emergence. To explain
the model, we first present the relation of the proposed model
to the cortical organization of the brain, then provide the
functional description of the model components, and finally
explain the deployment of the model on the robot providing
the details on how it actually operates. The components and
the information flow of the proposed model is presented in
Fig. 2

3.1 Relation to the Cortical Organization of
the Brain

We envision the model as composed of modules that are
active in both action generation and action observation.
The sensorimotor processing for manipulation starts from
the vision sensors, and might follow different pathways to
initiate movement.

Visual Processing: In the model, we lump all the visual
processing in the Visual Cortex module, which serves as the
source of visual information that drives the other modules.
The visual information that is relevant for manipulation
and hand monitoring is extracted in the dorsal pathway
and superior temporal sulcus, respectively (Nelissen, Borra,
Gerbella, Rozzi, Luppino, Vanduffel, Rizzolatti & Orban,
2011). The Caudal Intraparietal Sulcus (cIPS) in the parietal
pathway includes neurons that encode surface and axis
orientation, and is connected with Anterior Parietal Cortex
that hosts neurons that encode object shape and size (Sakata,
Taira, Kusunoki, Murata & Tanaka, 1997). Finally Ventral
Intra-Parietal Area neurons encode spatial location in various
reference frames and project to premotor area F4 (Luppino,
Murata, Govoni & Matelli, 1999). To summarize, these
areas include rich object information for manipulation, i.e.
affordances and the whereabouts of the objects. The Superior
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4 Adaptive Behavior XX(X)

Figure 2. Proposed altruistic behavior model. This model is valid for both an agent that is observing an actor or an acting agent.
The related brain parts for each of the modules are provided outside the corresponding box. The modules are grouped to present
the implementation modules. Motor area/functions are colored as yellow.

Temporal Cortex represents body and its parts in terms of
visual appearance. In particular, it contains neurons that
represent hand-in-action regardless of the owner of the hand.
STS and AIP are reciprocally connected (Nelissen, Borra,
Gerbella, Rozzi, Luppino, Vanduffel, Rizzolatti & Orban,
2011) and thus may form the basis of control variable
computation (such as distance or error) with probably help
from other neighboring regions such as PG (Oztop & Arbib,
2002). Both STS and AIP project to ventral premotor cortex
(area F5), which is a critical area that serves as the interface
between the sensory and motor system for hand actions. In
our model we assume that the output of AIP and VIP are used
by F4/F5motor module (a part of F5 area) to make an action
plan based on the object affordances, location and intention
of the organism.

Inference: An intriguing set of multimodal neurons in the
area F5 are called mirror neurons. These neurons become
active when the organism executes a manipulation action as
well when it observes a similar action being performed by
a conspecific. Although the exact function of these neurons
are not known, they seem to be related with prediction, e.g.
forward modeling and intention estimation (Oztop, Kawato
& Arbib, 2013), or inverse modeling supporting imitation,
and possibly forming the basis of self and agency concepts
(Hurley, 2008; Murata & Ishida, 2007).

A forward model is a computational process that represent
the mapping between the inputs to the modeled system
and the elicited responses or output. An inverse model
does just the opposite; thus from a motor control point of
view, if the mirror neuron responses are rich enough to
replicate an observed act, we might consider their function
as inverse modeling rather than forward modeling. In the
current model, we consider a high level forward model that

performs effect predictions about the perceived environment.
Without more digression on mirror neuron function, we take
the liberty to associate F5 mirror module with intention
inference function with the understanding that intention
understanding can be sustained by both forward and inverse
models with additional circuitry (Hurley, 2008; Oztop,
Kawato & Arbib, 2013; Oztop, Wolpert & Kawato, 2005)
This intention inference view is in fact compatible with the
recent views on mirror neuron function (Iacoboni, Molnar-
Szakacs, Gallese, Buccino, Mazziotta & Rizzolatti, 2005).
Motor Planner with Gating Mechanism: F5 motor neurons
are critical for hand control for manipulation; whereas F4 is
involved in reaching. The location of these areas are high
in the motor hierarchy (premotor cortex), as they project to
primary motor cortex. So it is plausible to envision F4 and
F5 as creating a motor plan that is executed by low level
motor centers. In the model, the motor planner receives its
input from the Prefrontal Cortex (PFC) through Thalamus,
which converts the desires of an organisms (e.g. ’want to
eat’) into desired sensory changes that can be used by the
motor planner. The Prefrontal Cortex is an area that is known
to be involved in mentally demanding tasks and working
memory. So we assume that the desires or high level goals
of an organism are represented by PFC. The thalamus is
a subcortical structure serving as a communication relay
center between brain regions (sensory, motor and cortical)
with modulatory and inhibitory mechanisms (Guillery &
Sherman, 2002). In particular, the mediodorsal thalamus
(MD) is a thalamic relay that contributes to cognitive
processes such as learning and decision making (Mitchell,
2015). Furthermore, MD and some other thalamic nuclei
project strongly to the cortical motor centers including the
ventral premotor cortex (i.e. F4, F5) (Fang, Stepniewska
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Affordance-Based Altruistic Robotic Architecture 5

& Kaas, 2006). Considering the information relay function
of the thalamus we propose that the thalamus undertakes
the gating function under the control of Prefrontal Cortex,
without specifying the exact nuclei within the thalamus.
So we postulate that (1) during action observation, the
propagation of F5 mirror output (predicted effect) to F5
motor is suppressed, i.e. not relayed to motor centers through
the thalamus due to the inhibition from PFC, and (2)
during action execution, PFC monitors the ongoing action
to detect possible disturbances. It is known that impulsive
imitation behavior can be caused by an impairment in
PFC function, which modulates thalamus relay function
(Guillery & Sherman, 2002). Compatible to this, in the
proposed model we argue that infant PFC is responsible for
the almost automatic (i.e. non-inhibited) altruistic helping
behavior by applying executive control on the thalamus relay
mechanisms. Initiation of such behavior is the result of
automatic adoption of the predicted effect of an observed
action as belonging to one’s self. This happens in infants
when social norms are not developed yet to inhibit this
action. In adult humans the PFC normally inhibits imitation
and altruistic behavior, and only let the sensorimotor system
imitate or help on a voluntary and purposeful basis, except
for the pathological cases.

3.2 Functional View of the Model

To be basis for an interactive robotic system the
modules of the model are designed to fulfill functional
requirements with real-time constraints although we keep
the connection to the possible brain regions (Fig. 2). The
model is required to operate in one of the two modes:
goal-achievement-mode or goal-inference-mode. In
the former the model executes actions to create a desired
change, i.e. fulfill a goal, whereas in the latter the agent
observes an ongoing action carried out by an actor by making
predictions about the aim of the actor. The following main
modules constitute our model:

• Vision Module captures the visual processing of the
brain by performing early visual processing and
computing spatial relations in the environment. The
input of this module is an RGB-D image captured by
a Kinect ∗ sensor.

• Affordance/Location Module captures the function
of the anterior intra-parietal and and the ventral
intraparietal area (AIP/VIP) of the primate brain. The
input of this module is the processed object point cloud
information from the Vision Module. As output, it

computes shape, size, orientation and location of each
detected object in the environment.

• Hand Processing Module captures the particular
functionality of the superior temporal sulcus (STS),
namely hand detection and trajectory formation
by using the output of the Vision Module. This
information is then used to find a list of objects that
are potentially the targets of the observed action.

• Intention Inference/Forward Modeling Module

is inspired by the possible functional properties
of mirror neurons and related circuitry. In
goal-inference-mode, this module is used to
infer the goal of the another agent taking into
account the affordances of the involved objects
and the hand trajectory of the acting agent. In
goal-achievement-mode, the acting agent can use
this module to continuously predict results of its own
actions to detect failures.

• High Level Decision Making Module represents
certain functions of the prefrontal cortex, in particular,
voluntary action generation and decision making. In
this study the robot is not operated as an agent with
its own goals, so this module is not active in the robot
experiments; but, we still included it in the model for
completeness.

• Information Gating Module captures the information
relay function of the thalamus under the control of
prefrontal cortex for directing and transforming the
predicted effect of an observed action (output of the
Intention Inference Module) or self-desired effect into
a representation that can be used by the motor planning
circuit.

• Motor Planner Module captures the mechanisms of
reach and grasp served by the premotor cortex, in
particular, motor neurons of F4 and F5 areas. The
input to this module is the desired effect that needs
to be created in the environment. Object affordances
are again exploited to search for the motor signals that
create movements for generating the desired effect.

• Online Control Module represents the basic function-
ality of the primary motor cortex (F1 area) and thus
has the responsibility of executing actions instructed
by the Motor Planner Module. In the robotic system

∗https://msdn.microsoft.com/en-us/library/hh438998.aspx accessed: June
2018
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6 Adaptive Behavior XX(X)

this also includes the low level controllers driving the
robot motors.

• Finally, Body/Plant Module represents simply the
embodiment of the system which moves and interacts
with the environment or other agents. For a human this
is the body; for our implementation this the robotic
system itself.

Most of the summarized modules above are utilized both
during action execution and action observation. The common
processing of the visual stimuli created by self and the
others’ actions gives rise to altruistic behavior as described
in the next subsection.

3.3 Model Operation for the Altruistic Robot

The robot execution starts only after a valid unfulfilled goal
is observed, therefore, we explain the operation of the goal
inference first.

Goal-inference-mode Our robot observes the table
environment continuously to detect a human manipulation
action. Whenever a hand is detected, the robot engages in
goal inference. To be concrete, the model adheres to the
following execution flow: The Vision Module receives visual
information from the environment and processes it to extract
hand and object information. The object information is then
processed in the Affordance/Location Module to retrieve
action possibilities provided by all the objects based on
their properties. Parallel to this, Hand Processing Module

processes the hand trajectory and extracts the likelihood
of each object to be the target of the acting human. The
affordances and likelihoods of the objects are then used
by the Intention Inference/Forward Modeling Module to
compute the goal of the acting human. The inferred goal
of the partner human is encoded as a predicted effect in
the environment and forwarded to the Gating Mechanism

Module. However action execution is not triggered unless
this predicted effect is allowed to be relayed to the Motor

Planner Module as a (self-) desired effect. This can be
interpreted as the default behavior of the Information Gating

Module: inhibiting the transformation of the predicted effect
as the desired effect (see Fig. 2). When it is observed
that the task is not being completed by the human, this
inhibition is lifted and the goal-achievement-mode is
activated. Therefore the suitable dis-inhibition mechanism
automatically yields an altruistic behavior. In the current
implementation, the system lifts the inhibition when it
detects that the human hand is not making any progress
towards completing the inferred task.

Goal-achievement-mode The robot in this mode
executes actions to fulfill a desired effect (e.g. place object
1 on top of object 2) by actively interacting with the
environment. The execution flow of the model in this mode
is as follows: As in goal-inference-mode, the visual
features and the object affordances are computed by the same
modules. Intention Inference/Forward Modeling Module is
used to make predictions based on object affordances and
effects of robot’s own actions.

The movement is planned by Motor Planner Module based
on the inputs of desired effect from the removalGating Mech-

anism Information Gating Module and object affordances
and location information from the Affordance/Location Mod-

ule. The movement plan is sent to the Online Control Module

that implements the plan by executing the action primitives in
the right sequence. The Online Control Module in turn con-
verts the primitive actions into low-level motor commands
for the robotic control system which creates changes in the
environment. In parallel to this, the perception modules of
the model monitors the scene, and performs the functions
they are responsible for completing the perception-action
cycle.

4 Robotic Implementation

4.1 Robot Perception

The robot is equipped with a Kinect depth sensor, and has a
built-in hand-vision coordination mapping so that the depth
image from the sensor can be mapped to robot task space
provided (Fig. 1). After the depth image is obtained, and
the pixels outside the region of interest are filtered out, the
objects are found by segmenting the remaining pixels using
the Connected Component Labeling algorithm (Haralick &
Shapiro, 1992). An object entering into the scene from the
side is labeled as “human hand”. Assuming the objects make
continuous movements, the robot can track objects even
when they are pushed or grasped by the human hand.

Feature Computation: For each detected object, the robot
computes a number of features. These features are encoded
in a 87 sized continuous vector composed of shape,
dimension and local distance related properties of the object.
Shape features are encoded as the distribution of local
surface normal vectors on the object surface. Specifically,
histograms of normal vectors along each axis, 8 bins each,
are computed to form 3× 8 = 24 sized feature vector.
Dimension encodes the object size in 3 different axes. Local
distance features encode the distribution of the local distance
of all pixels to the neighboring pixels. For this purpose, for
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Affordance-Based Altruistic Robotic Architecture 7

Figure 3. An execution example from the subject experiments. The top sequence (from robot’s perspective) and the bottom
sequence (external camera from side) belong to the same execution. The green texts in the figure are the object numbers used to
track the objects, and the affordances of the corresponding objects. gr, re, in, st, pu, ro respectively means graspable, reachable,
insertable, stackable, pushable and rollable. There are five objects on top of the table and the subject aims to insert the orange toy
inside the red basket. (a),(1): before task execution starts, (b): the robot detects the hand (cyan box) and the objects (red boxes),
(2): the subject interacts with the first object, (c): the object affordances are predicted. (3): the human transfers the first object up to
the reachable area for him, (d): the potential trajectories to the each object (green dashed arrows) and the actual trajectory,
(4,5,6,e): the robot executes the inferred plan, takes the orange object from the hand and inserting it inside the basket successfully.
Video url: https://youtu.be/eEX4cl4YEQI

each pixel, distances to the neighboring pixels are computed
along each 4 direction on the image. For each direction,
a histogram of 15 bins with bin size of 0.5cm is created,
obtaining a 4× 15 = 60 sized vector.

Affordance Learning and Detection: Affordances are
defined as the relations between objects, actions and effects
following (Şahin, Çakmak, Doğar, Ugur & Üçoluk, 2007);
and learned by training classifiers that predict the effect of
actions given the object features. A separate classifier is
trained for each action to predict the effect of that action
on a perceived object. The 87 sized feature vector that is
computed from the depth image of the corresponding object
is used as the input to a Support Vector Machine (SVM)
classifier. Real robot interactions are used for learning: the
robot executes its actions on objects, observes the generated
effects, and uses this experience to build classifiers. In this
work, we assume that the effect categories are known in
advance (see our previous work on how effect categories
can be autonomously discovered by robot actions on single
objects (Ugur, Oztop & Sahin, 2011) and on pairs of objects
(Ugur, Nagai, Sahin & Oztop, 2015)).

4.2 Goal Inference

The robot uses two levels of prediction mechanisms for
inferring the aim of an observed human. At the higher
level, the most probable action that can be executed by the
human partner is computed; whereas at the lower level, the
resulting effect that would be created due to the execution
of the anticipated action is predicted. We describe both
mechanisms below.

4.2.1 Behavior Prediction: In order to predict the action
of the acting agent, i.e. human partner, the robot searches
over each (action, object) pair to find the most likely pair
based on the hand trajectory observed so far and the object
affordances. To do this, the system creates expected hand
trajectories for each object on the table given the initial
human hand position. Then these trajectories are compared
against the observed actual trajectory of the hand via the
Dynamic Time Warping (DTW) algorithm (Müller, 2007) to
obtain the likelihood of the objects being the target of the
ongoing human action. Next, actions that can be be applied
to the list of ‘potential objects’ are predicted by utilizing
the object affordances. The potential object list is formed by
filtering the the objects by using a likelihood threshold based
on the hand trajectory. This threshold is calculated according
to threshold = 1/nobjs, where nobjs refers to the number
of objects. The rest of the objects from the highest likelihood
to the lowest are evaluated for the affordances available in
that time instance for a reasonable interaction, that is an
interaction that will cause a strongly predictable end scene in
case of successful execution, by taking into account both of
the objects and the hand position at that time. For example, if
a hand holding a ball is moving towards an area with a basket
and a lying cup, the prediction mechanism returns insertion
into the basket, because putting a ball on top of a lying cup
will result in an tumble effect that will cause a final scene
not possible to predict, whereas, the insertion causes a more
predictable final scene.

4.2.2 Effect Prediction: Once the action and the target
of the action is determined by the behavior prediction
mechanism described above, the robot computes the effect
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8 Adaptive Behavior XX(X)

(i.e. perceptual change) that would be generated by the
completion of the ongoing action based on the affordances
extracted for the target object. These effects are learned by
the robot by applying the actions on the objects or object
pairs during affordance learning phase. This information, as
well as the previously experienced actions and their achieved
goals, are stored in a structure for later processing. The
effect prediction uses the predicted (object, action) pair and
determines the likely change in the perception using object
affordances. For example, when a cubic object is inferred to
be put on another cubic object, stack effect is predicted to be
observed. It is worth reminding that the stack effect is a label
we use to describe a distributed sub-symbolic representation
of the object properties.

When the predicted effect is not fulfilled for a
fixed duration of time, e.g. if the hand is observed
to not make any progress towards completing the
task, altruistic behavior can be readily obtained by
switching the robot from the goal-inference-mode to
the goal-achievement-mode. After the
goal-achievement-mode is engaged, the robot makes
a plan based on its own action repertoire to complete the
predicted effect on the predicted object(s).

4.3 Motion Planning

The robot aims to minimize the difference between the
current and predicted situations. It achieves this by engaging
its autonomous motor planning that selects and orders a
set of primitive actions such as moving the arm to a given
position, closing or opening the gripper, etc. In other words,
there is no special help planning; the robot aims for full
goal-completion, if it is allowed by the environment. An
execution example from a subject experiment is provided
in Fig. 3 where the robot steps in and plans its actions
to achieve the inferred goal: one object being inside the
other. If the full goal-completion is not afforded by the
current context, then the robot aims to create a change in
the environment so that the predicted behavior of the human
becomes executable. In this example, placing the target
container object to the proximity of the human hand may
allow the human to act on it, and consequently help facilitate
task completion.

5 Experiments

The experiments involve a dexterous dual hand manipulator
robot implementing the sensorimotor mechanisms described
in Section 4. The robotic platform, Baxter †, is equipped with
two 7 degrees of freedom arms and two parallel grippers.

Figure 4. The experimental setups for hand-trajectory-based
target object prediction (Section 5.1.2) are shown. The hand in
each experiment was instructed to move along the green
dashed line starting from the green diamond mark. The possible
end points are marked with coins.

A Kinect depth sensor that is placed on top of the robot
serves as its means to perceive the environment (Fig. 1).
The environment is composed of a black table with a set of
object on it, where the Baxter and a seated human partner
(not visible in the figure) perform various manipulation tasks
on the objects.

The object manipulation and human-robot interaction
scenarios are designed as follows. Given a set of objects on
the table, the human partner is instructed to either get hold of
a particular object or create a certain spatial configuration
between two objects such that they become related with
one of the predicates of next to, on top, or inside. The far
side of the table is made unreachable to the human partners
by adjusting their chair positions individually. Furthermore,
the humans are not allowed to lean towards front. The
robot is initially set to the goal-inference-mode. Once
a hand is detected, it extracts object affordances and starts to
continually observe the human action to infer the goal of the
action. If the robot concludes that the inferred goal cannot be
achieved by the human, the goal-achievement-mode is
triggered. In this mode, the robot attempts to achieve the
goal through its own actions and the learned knowledge of
the object affordances.

With this interaction scenario in mind, the designed
experiments can be grouped into two: prediction evaluation

experiments (Section 5.1) and interaction experiments

(Section 6.2). The first group evaluates the learning and
prediction performance of the individual modules of the
system; whereas the second group evaluates the system as
a whole with subjects in human-robot interaction settings.

5.1 Prediction Evaluation Experiments

We designed experiments to evaluate the key components
of our model to ensure that our system can be deployed as
an interactive partner for a human. The experimental setups
are detailed below, and the results of these experiments are
provided in Section 6.1.

†https://www.rethinkrobotics.com/baxter/ accessed: June 2018
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5.1.1 Affordance learning and prediction: The aim of
this experiment is to test the performance of the learning-
based affordance prediction mechanism that uses the object
features extracted from the point cloud data as input. For
learning and test, we generated 417 scenes by using 28

different objects that were placed at various locations on
the table. The objects were either plush vegetable toys,
daily rigid objects such as boxes, balls, cups, or 3D printed
symmetric objects such as cylinders, cubes, containers. The
robot interacted with each object in each scene using its push
and grasp actions, stored the effects of these interactions,
and learned classifiers that predict effects of actions given
object features. In order to test the performance of our
affordance prediction models, and systematically analyze its
generalization capability, this dataset was used to generate
random n sized subsets from the full set of m objects for
training, and m− n sized subsets for testing. This process
was repeated 100 times to assess the average generalization
ability of our affordance prediction mechanism.

5.1.2 Trajectory based target prediction: This experiment
is designed to evaluate the performance of the system in
predicting the intended target object of the human subject by
using only hand trajectory information. Identical objects that
offer the same affordances were placed on the table. The task
of the subject was to perform a reaching movement targeted
at a pre-specified object, at a fixed position on the table. The
subject was instructed to follow a pre-defined path, and then
stop at one of the four end-points located 10, 20, 30, and 40
cm away from the target object (Fig. 4). The target object
was placed on the table at the far left side of the subject who
was instructed to move his hand in a diagonal path towards
the target starting from the home position. Our target object
prediction system was tested with 2, 4, and 6 objects on
the far side of the table, where each object was horizontally
separated by 30, 15 and 10 cm distances, respectively. For
each configuration, the subject made 10 incomplete reaching
movements as instructed. Therefore, (4 + 4 + 4)× 10 =

120 reaching movements were performed in total.

5.1.3 Trajectory and affordance based target prediction:

To investigate the efficacy of exploiting both hand trajectory
and object affordance information in inferring the goal of
an observed action, the first author was given the task to
bring a small ball towards a large insertable but unreachable
open box (target object) with the intention of placing the
object inside the box. The robot was required to predict
the target object by using the incomplete action trajectory
of the subject together with the affordance information
pertaining to the objects in the scene. The number of

Figure 5. Trajectory and affordance based prediction
experiment setup from the robot’s perspective. The prediction
capability of the robot was tested in configurations with
gradually higher level of complexities. (a) and (b) show the initial
and final configurations, respectively. New objects are added at
each configuration and tested 10 times from different start
points. The objects are numbered with the order of their
inclusion to the setup: an open box, a toy paprika, a reversed
cup, a basket, a medicine box and a cup.

objects is gradually increased to generate progressively
more challenging configurations. Fig. 5 (a) shows the initial
configuration of the objects (a ball in reachable area and a
larger box in unreachable area) from the robot’s perspective
prior to the action execution of the subject. The first scenario
includes no distractors so it is rather straight forward for the
robot to predict the goal of the human partner who grasps
the ball and transfers it towards the only remaining object.
The difficulty in inferring the target object was gradually
increased by adding an object to the target area at a time as
shown in Fig. 5(b). The prediction capabilities of the system
was tested in each of these six gradually more complex
configurations. For all the configurations the subject repeated
his insertion attempt 10 times. In each trial, the subject
picked up the ball from a different position and carried it
towards the target box until his reach limits. At this point, the
system made two predictions, one with the hand trajectory,
and the other with the perceived object affordances together
with the hand trajectory.

5.2 Human-Robot Interaction Experiments

We designed a number of experiments to evaluate
the complete system that integrates mechanisms of
affordance computation, target object prediction, behavior
and effect prediction, planning and execution in human-robot
interaction settings. The experimental setups are detailed
below, and the results of these experiments are provided in
Section 6.2. In the first set of experiments, the performance
of the system was tested on randomly generated scenes and
tasks. The first author who designed and implemented the
robotic system took the subject role for this purpose. In
the second set of experiments, our system was tested with
naı̈ve subjects who had no information about the model,
the underlying implemented system, perception mechanisms
of the robot or the reasoning behind the design of the
experiments.
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Figure 6. Two random generated scenes are on the left and the
corresponding experimental setups are on the right.

5.2.1 HRI experiments in randomly generated scenes:

The aim of this experiment is to evaluate the performance
of our integrated system in helping a subject who is familiar
with the robot and the system. To this end, we used a random
scene generator algorithm that selects 6 random objects out
of 20 objects (selected for this experiment) and instructs us to
place them on the table at randomly selected locations. This
algorithm picks at least three locations that are reachable
by the robot and at least two reachable by the human, and
distributes the chosen objects. The algorithm then selects
one object from each side, and designates them as objects
to be interacted with. The subject then voluntarily decides
a suitable goal using these objects, the goal being either
brining them on top of each other, or inserting one inside
the other. Example scenes generated by the random scene
generator and the corresponding real setups are provided in
Fig. 6.

The subject attempted to clear 24 randomly generated
interaction tasks in this experiment. In each configuration,
at least one object was unreachable by the subject and
reachable by the robot, therefore the subject was not able
to complete the task by himself and required the altruistic
helping behavior of the robot for task completion.

5.2.2 HRI experiments with naı̈ve subjects: The aim
of this set of experiments is to investigate the suitability
of our system as an altruistic partner for naı̈ve subjects
(subjects with no prior information on our robot, model,
implementation or the experimental design - See Appendix
A for details) in real world experimental tasks. The
subjects were informed about the aim of the experiment
as to test the robot in human robot collaboration with
naı̈ve users, how their data will be kept and used including
the video recording. Each subject was given 10 tasks. Before
a subject started his/her experiment, the seat was positioned
according to the physical specifications of the subject. Some
capabilities of the robot were not shown to the subjects in
order to later test if the subjects would expect help from the
robot with actions that were not observed before. For this, no

insertion action was shown to the first half of the subjects,
and no stacking action was shown to the second half. Before
watching the video the subjects were warned to pay attention
to how the robot collaborates with the humans, how the
humans receive help from the robot, and how the humans act
to collaborate with the robot. Instead of explicitly describing
the subjects how the robot infers actions and steps in for help,
we expected that the subjects could infer such information
from the videos if our system and setting were natural. The
object configurations that the subjects were engaged in the
experiments are shown in Fig. 7.

The subjects were given 10 tasks in total, in which they
were free to choose the means, i.e. how to complete the task.
The first two tasks involved grasping unreachable objects:
in task 1 there was only one object on the table, whereas
in task 2 the subject was free to choose to grasp one of the
three objects. In tasks 3-5, the subject was required to grasp
a small reachable object, and insert it in or stack it on one
of the unreachable objects that offered different affordances
such as insertability, stackability, and rollability. In task 3,
for example, the toy tomato was required to be inserted into
the box. Depending on the subject behavior, robot might
act differently in the same task: If the subject brought the
tomato to a reachable area for the robot, the robot would have
grasped the tomato and inserted it into the box. Otherwise,
if the subject held the tomato in an unreachable area for
the robot, the robot would have pushed the box towards
the subject in order to create an environment as close as
to the inferred goal. Tasks 6-7 were sequential where the
subject was required to select one of the two reachable small
objects, decide to insert/stack it in/on one of the unreachable
three objects that were either insertable or stackable, grasp
the remaining reachable small object, and decide to insert
it in or stack it on one of the unreachable objects again.
Tasks 8-10 were also composed of subtasks similar to the
previous one, with more objects to select from the reachable
area for the subject, and with unreachable objects that
offered affordances difficult to utilize. For example, there
was a fluffy soft object which had a round shape, affording
neither stackability nor insertability. Tasks with sequential
subtasks were used to give subjects freedom to create a
dynamic environmental task context. In the sequential tasks,
previous actions could cause changes in affordances of
some objects(see stable vs. variable affordances discussion
in (Borghi & Riggio, 2015)). For example, in the particular
implementation of task 9, if the subject did choose to stack
the carrot on top of the box, the box would have become
unstackable after this action, because the carrot on top of the
box did not afford stackability.

Prepared using sagej.cls



Affordance-Based Altruistic Robotic Architecture 11

Figure 7. The provided tasks and examples of initial configurations as snapshots taken from the naı̈ve subject experiments.

6 Results

6.1 Prediction Evaluation Experiment Results

6.1.1 Affordance learning and prediction: In this experi-
ment, our dataset was separated into different sized training
and test sets 100 times with shuffled data. In order to avoid
overfitting, different scenes from the same object were not
shared between the training and test sets (see Section 5.1.1
for details). Our motivation is to evaluate the performance of
affordance predictors that use visual features of the objects.
Fig. 8 provides the mean accuracy of each affordance pre-
dictor that used gradually increasing ratios of the data for
training.

Note that the error bars indicate the 95% confidence
intervals for the affordances. The accuracy is low when
the training size is small as expected. When 90% objects
were used in training, the mean accuracy is higher than
90%. Insertability and stackability affordances were learned
with high success rates compared to the others because
hollow and flat top parts were easier to detect. Furthermore,
pushability and rollability affordances depend on also the
material properties of the objects, which were not encoded
in the feature vectors.

6.1.2 Trajectory based target prediction: In this exper-
iment, different numbers of identical objects were placed
on the target area, partial reaching attempts with different
length trajectories were performed towards one of those
objects, and these reach attempts were repeated 10 times
for each configuration. We evaluated the performance of
the target object predictors that only use hand trajectory
information of the subject in the experiment setup described
in Section 5.1.2. Fig. 9 provides the results where the black,
dark gray and light gray bars show the results of reaching
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Figure 8. The accuracy of affordance predictors that use
different ratios of data for training. Each training/test is repeated
100 times shuffling the dataset, therefore a distribution is
presented where the bars and the lines correspond to the
means and 95% confidence intervals, respectively.

attempts in settings with 2, 4 and 6 objects, respectively. In
2-object case, the target prediction was successful almost all
the times unless the hand stopped 40 cm away from the target
object. In 4-object case, the target prediction was successful
unless the hand stopped 30 cm away. In the most cluttered
setting, i.e. with 6 objects, the target prediction could be
successful only when the hand came very close to the target
object. These results show that, when the objects in the target
area are few and separated sufficiently, the trajectory is a
good indicator for target object prediction. However, when
the number of objects increase and the objects start to get
closer to each other, the prediction is successful only when
the hand becomes close to the proximity of the target object.

These results show the limits of our hand-trajectory-based
predictor: the robot cannot predict the target object when the
hand is far away and the target object is closely surrounded
by others.
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Figure 9. The performance of target object prediction only
from hand trajectory. 10 trials were performed for each
configuration: 2, 4 or 6 objects were placed to the target area
and subject’s hand halted at 10, 20, 30 and 40 cm distance from
the target object.
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Figure 10. Gray and black bars show the success rates of the
goal prediction mechanism of the system without and with
exploiting affordances, respectively

6.1.3 Trajectory and affordance based target prediction:

In this experiment, we evaluated the benefit of using
object affordances as an additional source of information
to hand trajectory data in predicting target objects of
incomplete actions in the constrained experimental setup
described in Section 5.1.3. Recall that the number of the
objects on the target area was gradually increased and the
subject performed a partial reach action 10 times in each
configuration with the aim of inserting the object held
into a target container. At the end of human action, the
system made two predictions, with and without perceived
affordances.

Fig. 10 provides the performances of the predictors that
do and do not utilize affordances. These results show that
affordances were instrumental in more consistently and
better detecting target objects when an affordance prior
(insertion) is used: the prediction performance degraded
gracefully when the system exploited affordance information
in contrast to when only the hand trajectory information was
available.

6.2 Human-Robot Interaction Experiment
Results

The human-robot interactions were recorded by two cameras
and stored along with the execution logs during experiments.
The intended goal of the human partner could be obtained
from the execution logs for the experiment that used
randomly generated scenes (since the goal was instructed to
the human), or extracted from the questionnaires filled by the
subjects in the naı̈vesubject experiments. Object selection,
affordance prediction and plan generation related errors were
identified by inspecting the generated plans stored in the
execution logs. Finally, the videos were inspected to assess
whether each execution was successful or not, and the cause
of the problem, in case of a failure.

6.2.1 HRI experiments in randomly generated scenes:

In these experiments, we evaluated the performance of the
integrated system in randomly generated configurations and
two object manipulation tasks. 24 random scenes were
generated with 6 objects and the first author attempted to
achieve randomly generated tasks that can only be achieved
with the help of the robot. These experiments required both
inference of the goal of the subject and physical help of the
robot. The results indicate that although the goal inference
was correct in about 96% of the trials, the requested task
could be completed by the subjects with the help of the robot
in about 71% of the trials due to execution related errors
(see Table 1). In these experimental trials, as the goal was
beyond the subject’s capabilities in all the tasks, the robot
either finished the incomplete goal directly (e.g. by grasping
an object from subjects’ hand and releasing it inside a box),
or assisted the subject for the completion of the goal (e.g.
by pushing the box towards the subject so that the subject
can drop the object directly inside the box). Fig. 11 shows
snapshots from the experiments where the robot directly
completed the goal Fig. 11(a) or assisted the subject for goal
completion Fig. 11(b).

With this finding, we conclude that the proposed model
and its implementation on our robot can be used in real-
time, even though a near-perfect performance could not
be obtained. Therefore, we moved to experiments with
naı̈ve subjects to assess the suitability of our system as an
altruistic partner in natural settings.

6.2.2 HRI experiments with naı̈ve subjects: We evalu-
ated the performance of the integrated system using 10
naı̈ve subjects in 10 tasks described in Section 5.2.2. Each
subject was assigned the same set of tasks that required
robot’s help in their attempts of reaching objects, inserting
objects inside others, or stacking objects on top each other.
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Figure 11. There are two execution examples in the figure taken from different naı̈ve subject experiments (a-1 to a-5 from subject
5 and b-1 to b-5 subject 9 both in round 7). The aim of both subjects are to stack the carrot on top of the object in the middle. In the
upper case since the robot detected the carrot as unreachable, it planned to push the object in the middle to the subject for
enabling him to complete the task. Whereas, in the lower case the robot detected the carrot as reachable and stacked it on top of
the object by itself.

Table 1. The results of the HRI experiments in randomly
generated configurations

Result Rates (randomly generated scenes)
Successful execution 70.84%
Failure in affordance computation 4.16%
Failure in predicting the 1st obj 0.00%
Failure in predicting the 2nd obj 0.00%
Failure in planning 0.00%
Failure in execution 25.0%

After each task was attempted, the subjects were given a form
that includes 3 questions about their intended task, what type
of actions the robot took, and their grade from 1 to 5 on the
success of the robot to help them complete their intended
task (see Appendix B, Q1.1-1.3). The grades given by the
subjects to the third question are summarized in Table 2. In
55% of all tasks, the subjects graded the robot with highest
two grades (4 or above), therefore, it can be argued that the
subjects were satisfied with the altruistic helping behavior of
the robot to complete their intended task in most of the time
during the experiments. 15% of the tasks, the subjects did
choose an average grade of 3. In the rest of the tasks, the
subjects graded the system with low grades, i.e. with 2 or 1.
The subjects were asked to fill another form (see Appendix
B, Q2.1-2.10) that was provided after they completed all the
experiments, which probed for their overall experience with
the robot. Two questions related to the success of the robot
in inferring and helping the human (Q2.1 and Q2.3) received
an average score of 3.90± 0.91, and two questions related
to the realism of the system in speed and behavior (Q2.4 and
Q2.5) received an average score of 2.75± 0.91. The subjects
found the system successful, yet averagely realistic.

The ratings of the naı̈ve subjects were subjective and
dependent on their level of understanding and engagement
in the tasks. To have a less subjective assessment, the
main author also evaluated the results of the naı̈ve subject
experiments by reviewing the questionnaires, the execution
logs and the videos. The results indicate that 68 of 100 trials

Table 2. The grades given by the subjects for their evaluation
on the success of the altruistic helping behavior of the robot to
complete their aim after each trial are provided. T1 and S1
correspond to task 1 and subject 1, TM and TV correspond to
mean and standard deviation of the grades given to the
corresponding task, and SM and SV refer to the mean and
standard deviation of the grades given by the corresponding
subject.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 TM TV
T1 5 5 5 5 4 5 3 4 5 4 4.5 0.71
T2 4 5 5 4 1 1 4 3 5 5 3.7 1.57
T3 4 4 5 5 5 4 4 5 3 1 4.0 1.25
T4 2 5 1 5 1 1 2 5 5 1 2.8 1.93
T5 3 2 5 5 1 5 4 2 3 2 3.2 1.48
T6 1 5 4 5 4 3 2 3 4 3 3.4 1.26
T7 5 4 2 3 5 3 2 4 5 1 3.4 1.43
T8 3 1 1 2 1 3 1 4 5 1 2.2 1.48
T9 2 5 5 5 4.5 5 3 2 5 4 4.05 1.26
T10 4 1 5 4 1 1 4 2 3 3 2.8 1.48
SM 3.3 3.7 3.8 4.3 2.7 3.1 2.9 3.4 4.3 2.5 3.4
SV 1.3 1.7 1.7 1.0 1.8 1.6 1.1 1.1 0.9 1.5

were successfully completed. According to the evaluation,
the robot never failed to infer the first target object that the
naı̈ve subject intended to grasp. Given the inferred goals, the
robot never made an incorrect plan as well. Evaluations have
shown that the most common cause of the task completion
failure was due to the object manipulation problems (19%).
Furthermore, in 8% of the interactions, the execution failed
because of a collaboration failure between the robot and the
human in handing an object. Push execution was another
problematic case with 5% of the interactions, some thin
objects when pushed along their major axis escaped from
the gripper and some light objects toppled over the table;
and did not move as expected. While the former case can be
improved with better close-loop controllers, the latter case is
challenging as the weight of the object is difficult to perceive
from vision.
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Table 3. The results of the HRI experiments with the
naı̈ve subjects experiments in the pre-defined configurations.

Result Rates (volunteer naı̈ve subjects)
Successful execution 68.0%
Failure in affordance computation 1.00%
Failure in predicting the 1st obj 0.00%
Failure in predicting the 2nd obj 4.00%
Failure in planning 0.00%
Failure in execution 19.0%
Failure in human collaboration 8.0%

6.2.3 Discussion We observed that the success criteria
of the naı̈ve subjects were diverse and sometimes counter-
intuitive especially when we consider that their answers
should have reflected the robot’s capability in completing the
tasks. For example, in a scenario where the subject tried to
insert a grasped object into an unreachable box, she expected
the robot to pick up the object from her hand that was
stretched towards the robot even if her hand was unreachable
for the robot. In this case, the robot pushed the box towards
the subject, which enabled the subject to drop the object into
the box; however the subject still annotated this behavior
as a failure. This example suggests that humans might see
the robots failing even if the robot successfully helps them
in clearing the given tasks, probably because they are not
aware of the capabilities of the robots: reachability region of
the robot in this particular example. Yet, in other examples,
although the robot was incapable of completing the tasks, the
subjects gave a high grade if the action plan of the robot was
correct from their perspectives. In a setting where the subject
was required to stack an object over an unreachable one, the
robot was rated as successful when it picked up the object
from her hand and released it over the target, independent of
the result of the stacking action. In other words, even when
the objects tumbled of the stack as the result of the release
action of the robot and the task was not accomplished as
specified, the subject gave a high grade to the robot.

The lack of a good understanding of robot capabilities
not only resulted in dissatisfaction for the subjects, but also
significantly affected the physical interaction performance.
Related to affordance detection capability, our system
computes object affordances from the visual perception of
the immediate environment. For example, the robot perceives
a lying cylinder on the table as a rollable, non-pushable
and non-stackable object; and reasons over these affordances
throughout the interaction trial. From a human perspective,
on the other hand, the same object can be exploited as
a stackable and pushable object when a simple ‘rotate’
action is applied. Therefore, collaboration attempts fail when
humans expect the robot to infer or execute such ‘obvious’
actions that were not included in the action repertoire of the

robot and that were not considered to change to affordances
by the robot. The low grades obtained in Task 8 are due to
the mismatch between insertion affordance perception of the
robot and the subjects. From the perspective of the robot,
the robot learned that the objects with large surface areas are
not insertable to smaller gaps. However, from the perspective
of the human subjects, the soft toy eggplant can be picked
up, rotated and squeezed into the box. As the robot decides
object affordances from their perception on the table and
the robot does not have rotate or squeeze primitives in its
action repertoire, it failed to help to the subjects when the
subject chooses insertion with the eggplant. In Task 9, the
subjects generally selected an action that involves the toy
tomato, where the system obtained high grades by stacking
the tomato on the cylinder or the box.The object detection
capabilities of the robot are limited currently with the
available point cloud information in our system. Therefore,
an accurate position perception of the objects that are in the
hand of people is not possible; and the robot requires some
help from human while picking up the object from the hand.
Subject 7, for example, was either not aware of this fact
or found this unacceptable, and therefore rejected to move
the object in her hand towards the robot gripper while the
robot tried to pick up the object. A final observation was that
even with the prior exposure of the video recoding, a subject
(subject 10) failed to understand/remember how two object
interaction tasks were achieved by the robot. The subject 10
could not achieve the relatively simple third and fourth tasks,
and failed in the rest of the tasks as well.

A final remark on naı̈ve subject experiments is that, when
required, the subjects were able to predict that the robot
could engage with actions that were not previously shown
to them in the introduction videos. For example, even if the
first group of subjects were not shown insert action of the
robot, they could infer that the robot could help them if the
task requires insertion of the objects.

To sum up, we provided video recordings of human-
robot interactions to communicate the capabilities of
the robot to naı̈ve subjects with minimal explicit prior
information about the inference and execution mechanisms
of the robot and about the aim of our experiments. Still,
our observations suggest that longer physical interaction
experience with robots is required in such HRI settings
as otherwise naı̈ve users cannot develop a theory of mind
for the autonomous robots, and cannot engage in effective
collaboration with them.
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7 Conclusion

In this paper a biologically inspired model is proposed
to explain the mechanism behind the altruistic behavior
observed in young infants. The proposal suggests that the
altruistic behavior is not necessarily a result of complicated
cognitive processes but can emerge through basic sensory
processing. To leverage the plausibility of the model, it
was implemented on a physical robot and evaluated in five
different experimental setups, evaluating the components of
the system one by one, and verifying the integrated system
in human-robot interaction scenarios. The experiments in
which the first author acted as the subject were used
for verification and testing of the technical aspects of
our proposed system. While some of the experiments
(behavior prediction with/without affordance) checked
whether particular modules had significant effect on system
performance, the others (behavior prediction in densely
cluttered environments or robot action selection in randomly
generated scenes) were used as stress tests to assess the
performance of the robot in difficult configurations. These
experiments were designed to be significantly more difficult
than the naı̈ve subject experiments, and shows the limits of
our system rather than how humans act or perform with it.

It was found that the affordances that involve actions with
single and paired objects (e.g. graspability and insertability)
could be predicted with high accuracy respectively based on
their visual features but the inability of detecting material
properties of the objects did not allow close-to-perfect
affordance prediction. This confirmed that some affordances
depend on the material properties, and therefore perception
systems that do not perceive such properties are expected
to make mistakes in detecting affordances. While advanced
machine learning methods and large datasets can be used
to discriminate tactile properties from haptic and visual
data (Gao, Hendricks, Kuchenbecker & Darrell, 2016),
integration of such detailed and specific methods is out of
the scope of this paper.

The learned object affordances, in turn, was shown to
increase the performance of inferring the goals of observed
actions of others especially if the target objects of those
actions are located in cluttered environments. If the hand
trajectory is used without affordance information, the goal
inference performed well only if the scene is not cluttered or
the hand is in the vicinity of the target object.

Our HRI experiments in randomly generated challenging
environments and tasks verified the integrated altruistic
robotic model in real world. We analyzed the reasons of
failures systematically and concluded that while our system

performed well in affordance detection, goal prediction and
action planning for help, the robot’s helping capability
was significantly affected from the difficulties in physical
interaction with such a high variety of objects without
any opportunity of taking haptic information into account
during the control of the simple parallel gripper. Next, we
designed HRI experiments with naı̈ve subjects who were
not provided any information about robot’s behavior and
underlying mechanisms except a very short video recording
from subject - robot experiments. The naı̈ve subjects were
given 10 different tasks which required robot’s assistance
in different forms, and we observed that the robot could
successfully infer the goals of the naı̈ve subjects and make
correct plans to complete their incomplete action executions,
although it suffered from problems in actually execution
of actions largely due to manipulation problems again and
in some cases due to subjects’ inability to understand
how to physically collaborate with the robot. The system
should be improved with advanced closed-loop manipulation
controllers that exploit haptic information and feedback
for better handling of objects. In particular, the adoption
of anthropomorphic dexterous hands for the robot end-
effector would eliminate grasping errors, widen the objects
that can be worked with, and allow a more intuitive
collaboration. Another issue is that the speed limitation of
Baxter was reported as an hindrance for the naturalness
of the system, and thus should be thought upon. Never
the less, our general conclusion from HRI experiments is
that our altruistic robotic model could successfully infer
the intended goals of actions and engage in interaction
for completing the unfulfilled goals with correct actions.
Brain-inspired dual-use of sensorimotor components in
inferring others’ actions and achieving self-goals were
shown to be effective in the real world especially when
learned affordances were exploited. Relied on the error
minimization mechanism, altruistic behavior was shown
to be the result of basic sensorimotor processes rather
than deliberate cognitive processes in our robotic model
and implementation. However towards a more natural
human-robot collaboration and higher performing altruistic
behaviors, the action representation should be improved with
advanced closed-loop controllers and with haptic feedback
allowing faster and more reliable action execution.

Our system can cam complete the unfulfilled goals of
human manipulation actions; however this is only one type
of human-robot collaboration. For example, a human might
require robots collaboration in tasks that are beyond his/her
capabilities or might benefit from the help of the robot to
speed-up goal achievement. The former case can be achieved
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by our framework for certain manipulation tasks, however
reasoning about tasks that require for example physical
collaboration such as carrying heavy objects is beyond the
capabilities of our system as predicting effects of joint action
executions is not addressed in our work. For speeding goal
achievement, the robot would need to predict higher level
goals that might require execution of sequence of actions on
several objects. For instance, in a table tidying up scenario,
the robot would need to infer the general goal by combining
its observation of human actions that are of the form of
pick-up and place. In our current design, the goals are
associated to particular objects that are involved in human
actions. Therefore, the goal is required to be detached from
the particular manipulated objects, and represented in a
more abstract level to achieve abstract goal satisfaction. We
believe that our model is suitable for such extension, however
deciding the right level of abstraction or the right goal from
a set of possibilities is an open problem on its own (Argall,
Chernova, Veloso & Browning, 2009).

As a future work, we also would like to work on
more realistic human-robot collaboration settings that are
continuous rather than episodic and that include inferring and
planning multi-step actions with chained effect predictions
in object affordances. Finally, the more biologically realistic
implementation of model components should be considered.
This way, the results may be used to generate predictions
at finer granularity for developmental neuroscience and
psychology.
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A Naı̈ve subject details

Volunteer subjects were recruited through various university
mailing-lists. The students who study robotics and/or have
information on this particular research topic were not
allowed to participate. The subjects were composed of 1
female and 9 males aged 24-28 (one with Medicine, six with
Engineering, and three with Social Sciences backgrounds).
None of the subjects had any prior first-hand experience with
a manipulator robot.

B Questionnaires for the naı̈ve subjects

The questions given to the naı̈ve subjects after each of their
attempted task are as follows (1-lowest, 5-highest):

Q1.1. What was your intended action?

Q1.2. What was the action of the robot?

Q1.3. How successful was the robot in helping your task?

The questions given to the naı̈ve subjects at the end of the
experiment are as follows (1-lowest, 5-highest):

Q2.1. How well did the helping behavior of the robot match
with your expectations?

Q2.2. How much were you surprised with the solutions of
the helping robot?
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Q2.3. How well the robot predicted the aim of your actions?

Q2.4. How realistic was the helping behavior of the robot?

Q2.5. Please grade the speed of the reaction of the robot.

Q2.6. What type of situations did you have difficulties?

Q2.7. What type of situations did you like most?

Q2.8. Would you like to have the help of such a robot in your
daily life ?

Q2.9. What can be done on the robot to make it more helpful
and more realistic?

Q2.10. Any other additional comments?
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